Symplectic Reduction for Semidirect Products and Central Extensions
نویسندگان
چکیده
This paper proves a symplectic reduction by stages theorem in the context of geometric mechanics on symplectic manifolds with symmetry groups that are group extensions. We relate the work to the semidirect product reduction theory developed in the 1980’s by Marsden, Ratiu, Weinstein, Guillemin and Sternberg as well as some more recent results and we recall how semidirect product reduction finds use in examples, such as the dynamics of an underwater vehicle. We shall start with the classical cases of commuting reduction (first appearing in Marsden and Weinstein [1974]) and present a new proof
منابع مشابه
Semidirect Products and the Pukanszky Condition
We study the general geometrical structure of the coadjoint orbits of a semidirect product formed by a Lie group and a representation of this group on a vector space. The use of symplectic induction methods gives new insight into the structure of these orbits. In fact, each coadjoint orbit of such a group is obtained by symplectic induction on some coadjoint orbit of a " smaller " Lie group. We...
متن کاملCentralizers of Lie Algebras Associated to the Descending Central Series of Certain Poly-free Groups
Poly-free groups are constructed as iterated semidirect products of free groups. The class of poly-free groups includes the classical pure braid groups, fundamental groups of fiber-type hyperplane arrangements, and certain subgroups of the automorphism groups of free groups. The purpose of this article is to compute centralizers of certain natural Lie subalgebras of the Lie algebra obtained fro...
متن کاملof Main Research Achievements , Jerrold E . Marsden
Symplectic Reduction Theory. Symplectic reduction theory for mechanical systems with symmetry was developed in Marsden and Weinstein [1974]. This far-reaching generalization of classical work of Jacobi, Liouville, Routh, and Poincaré led, over the years to many significant developments in both mechanics and mathematics. Guillemin and Sternberg describe some of these in their 1984 book Symplecti...
متن کاملInfinite Dimensional Groups, Their Representations, Orbits, Invariants
1. Representation theory for infinite dimensional groups does not exist as a theory although such groups occur long ago in several branches of mathematics and its applications. Among the most important examples are: (a) groups of automorphisms of infinite dimensional vector spaces with some additional structures (unitary, symplectic, Fredholm etc.); (b) groups of diffeomorpliisms of smooth mani...
متن کاملA Mathematica Notebook for Computing the Homology of Iterated Products of Groups
Let G be a group which admits the structure of an iterated product of central extensions and semidirect products of abelian groups Gi (both finite and infinite). We describe a Mathematica 4.0 notebook for computing the homology of G, in terms of some homological models for the factor groups Gi and the products involved. Computational results provided by our program have allowed the simplificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998